M.G. KASHI VIDYAPITH UNIVERSITY, **VARANASI**

M.Sc. I Sem. MATHEMATICS (PAPER-SECOND), 2017 (REAL ANALYSIS-I)

Three Hours

Maximum Marks: 100

tote: Answer five questions in all. Short answer type Question No. 1 carrying 40 marks is compulsory. Answer one question carrying 15 marks from each Unit.

Note: The answer to short questions should not exceed 200 words and the answers to long questions should not exceed 500 words. https://www.mgkvponline.com

Answer the following:

 $4 \times 10 = 40$

https://www.mgkvponline.com

(a) Define lower and upper Riemann stieltzes sums.

(b) Let $f : [a, b] \rightarrow R$ be defined by f(x) = k and g a monotonically non-decreasing function on [a, b]. Prove that the integral fdg exists

and
$$\int_a^b f dg = k[g(b) - g(a)]$$

- (c) State Abel's test the convergence of the product of series $\Sigma u_n v_n$.
- (d) Show that the series

$$\sum \frac{\sin nx}{n}$$

Converges for all real values of x

- (e) Define pointwise convergence of a sequence.
- (f) Lef (fn) be a sequence defined by

fn: R \rightarrow R such that fn (x) = $\frac{x}{n}$, $\forall x \in R, n \in N$. Show that

the sequence converges pointwise to the zero function.

(g) State Mn-test

- (h) What do you understand by the differentiability of a function F: A → R^m where A is an open subsets of Rⁿ.
- State Implicit function theorem.
- (j) Define Jacobian of n functions u1, u2, ... un of n-variables x1, X_2, \ldots, X_n .

Unit-l

2. Let f be a bounded function and g a be non decreasing function on [a, b]. Then prove that $f \in RS(\alpha)$ iff for every $\epsilon > 0$, there exists a partitions p such

$$U(p,t,g) - L(p,f,g) < \epsilon$$
.

3. Let $f_1, f_2 \in RS(g)$ on [a, b]. Show that $f_1 + f_2 \in RS(g)$ on [a, b] and

$$\int_{0}^{b} (f_{1} + f_{2}) dg = \int_{0}^{b} f_{1} dg + \int_{0}^{b} f_{2} dg$$

Unit-II

 State and prove the Dirichlet's test for the convergence of the product series Σu_nv_n.

Or

5. If a series $\sum u_n$ is convergent, then show that the product series $\sum \left(\frac{n+1}{n}\right)u_n$ is also convergent.

Unit-III

6. Let g be a monotonically increasing function on [a, b] and let {f_n} be a sequence of real valued functions defined on [a, b] such that f_n ∈ RS (g) on [a, b] for n = 1, 2, If f_n → f uniformly on [a, b], then prove that f ∈ RS (g) and ∫ fdg = lim ∫ f_ndg.

Or

https://www.mgkvponline.com

وو

7. State and prove Tauber's theorem.

Unit-IV

8. If $x = r \sin q \cdot \cos f$, $y = r \sin q \cdot \sin f$ $z = r \cos q$, then find the Jacobian $\frac{\partial (x, y, z)}{\partial (r, \theta, \phi)}$

OR

Find the maximum and minimum radii vectors of the section of the surface

$$(x^2 + y^2 + z^2) = a^2x^2 + b^2y^2 + c^2z^2$$

By the plane $|x + my + nz| = 0$

https://www.mgkvponline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रूपये पार्य, Paytm or Google Pay से