B. Sc. (Part-III) Examination, 2016 Mathematics- Second Paper

(Second Analysis)

Note: Answer five questions in all. Question No. 1 is compulsory. Answer one question from each unit. Marks allotted to each question are indicated in the right hand margin.

1. Answer the following:

MGKVPonline.com

 $3.5 \times 10 = 35$

4

- (i) Prove that whenever the limit of one valued function exists at a point it is unique.
- (ii) Find the radius of convergence of the power series

$$\sum z^n/n^n$$

(iii) Find the harmonic conjugate of the harmonic function

$$u = \frac{1}{2}\log(x^2 + y^2)$$

- (iv) Find the bilinear transformation which transform the point z = 2, 1, 0 into w = 1, 0, i.
- (v) Explain the concept of isogonal and conformal mapping.
- (vi) Evaluate \int_{c}^{dz} (ab-initio)
- (vii) Expand the series of the function

$$f(z) = \frac{1}{z^2 - 3z + 2}$$

in the region 1 < |z| < 2

- (viii) Find the residue of function $\frac{z^2}{z^2 + a^2}$ at z = ia
- (ix) Define natural boundary.
- (x) Distinguish between pole and essential singularity.

Unit-I

2. (a) Prove that the function u+iv = f(z)

where
$$f(z) = \frac{x^3(1+i)-y^3(1-i)}{x^2+y^2}$$
,

 $z \neq 0, f(0) = 0$ MGKVPonline.com

is continuous and Cauchy-Riemann equations are satisfied at the origin; yet f(0) does not exist.

- (b) off f(z) = u+iv is analytic function in domain D, prove that the curve u = const.v = const. forms two orthogonal families.
- (a) Prove that the power series represents an analytic function inside its circle of convergence.
 - (b) Obtain Cauchy-Riemann equations for an analytic function.

Unit-II

- 4. (a) To prove that at each point z of a domain where f(z) is analytic and $f'(z) \neq 0$, the mappig w = f(z) is conformal. MGKVPonline.com
 - (b) Show that the relation $w = \frac{5-4z}{4z-2}$ transform the circle |z|=1, into a circle of radius unity in w-plane.
- 5. (a) Find all mobius transformations which transform the unit circle $|z| \le 1$ into the unit circle $|\mathbf{w}| \leq 1$. 5
 - 5 (b) Show that by means of the transformation

$$w = \left(\frac{z - ic}{z + ic}\right)^2 (c real)$$

the upper half of w-plane may be made to correspond to the interior of a certin semi-circle in the z-plane.

6. (a) Off a function f (z) is analytic inside and on a simple closed contour c, then

prove that
$$\int_{C} f(z) dz = 0$$

- (b) Off a function f(z) is analytic for finite values of z and is bounded, then prove 5 **Or** that f(z) is constant.
- 5 7. (a) State and prove Maximum Modulus theorem.
 - (b) State and prove Cauchy's integral formula for the derivative of an analytic function.

6 Or

5

Unit-IV

8. (a) What kind of singularity do the following functions have:

(i)
$$\frac{1}{\sin z - \cos z} \text{ at } z = \frac{\pi}{4}$$

(ii)
$$\sin \frac{1}{z}$$
 at $z = 0$

(b) Prove that:

$$\int_0^\infty \frac{\cos mx}{1+x^2} dx = \frac{\pi e^{-m}}{2}, m > 0 \qquad \text{MGKVPonline.com}$$

9. (a) Off 0 < b < 1, show that the series:

 $\frac{1}{2}\log(1+b^2) + i\tan^{-i}b + \frac{z-ib}{1+ib} - \frac{1}{2}\left(\frac{z-ib}{1+ib}\right)^2 + \dots$

is analytic continuation of the function defined by series,

5

$$z - \frac{1}{2}z^2 + \frac{1}{3}z^3 - \frac{1}{4}z^4 + \dots$$

(b) Prove that

$$\int_0^\infty \frac{\sin x}{x} \, \mathrm{d}x = \frac{\pi}{2}$$

MGKVPonline.com

अपना पेपर हमें WHATSAPP या Email करे ओर 10 से 20 रूपए का मोबाइल TOPUP या PAYTM प्राप्त करे और अपने जूनियर्स कि मदद भी करे

Whatsapp No 9300930012 E-mail MA9300930012@GMAIL.COM