B. Sc. (Part-III) Examination, 2017 Mathematics- Fourth Paper (Optional)

(C) Differential Geometry and Tensor Analysis

Note: Answer any five questions in all. Question No. 1 is compulsory.

Answer one question from each unit. Marks allotted to each question are indicated in the right hand margin.

1. Answer the following in brief:

 $3.5 \times 10 = 35$

- (i) Find the equation of the osculating plane at a general point on the curve given by $r = (u, u^2, u^3)$.
- (ii) Show that Seret-Frenet formulae can be written in the form t' = wt, $n' = w \times n$, $b' = w \times b$ and determine w.
- (iii) Find the radii of curvature and torsion of the helix $x = a \cos u$, $y = a \sin u$, $z = a u \tan \alpha$.
- (iv) Find the equation for the tangent plane to the surface $z = x^2+y^2$ at the point (1, -1, 2).
- (v) For the paraboloid $r = (u, v, u^2-v^2)$ find the metric.
- (vi) Show that the curve bisecting the angles between the parametric curves are given by $E dv^2-G dv^2=0$.
- (vii) Show that the Gaussian curvature of the surface given by z = f(x,y) is

$$\frac{rt - s^2}{(1 + p^2 + q^2)^2}$$

- (viii) Find the envelope of the plane 1x+my+nz=0 where $al^2+bm^2+cn^2=0$.
- (ix) Prove that the velocity of a fluid at any point is a contravariant tensor of rank one.
- (x) Show the $g_{ij} dx^i dx^j$ is an invariant.

Unit-I

- 2. (a) To show that the necessary and sufficient condition for the curve to be plane is $[\dot{r}, \ddot{r}, \ddot{r}] = 0$.
 - (b) Find the Osculating plane, Curvature and Torsion at any point of the curve $x = a \cos 2u$, $y = a \sin 2u$, $z = 2 a \sin u$. Or
- (a) Show that a necessary and sufficient condition for a curve to be helix is that the ratio of the curvature and torsion is constant. 10
 - (b) If a curve lies on a sphere, show that ρ and σ are related by $\frac{d}{ds}(\sigma \rho') + \frac{\rho}{\sigma} = 0.$ MGKVPonline.com

Unit-II

4. (a) If the radius of spherical curvature of a curve is constant, Prove

		that the curve either lies on the surface of a sphere of else has constant curvature. MGKVPonline.com 10
	(b)	Show that the involutes of a circular helix are plane curve. Or
5.	(a)	To show that a proper parametric transformation either leaves
		every normal unchanged or reverses every normal. 10
	(b)	The metric remains invariant if the parameters u,v are transformed
		to the parameters u',v' by the relations of the forms $u'=\varphi(u,v)$
		$\mathbf{v}' = \Psi(\mathbf{u}, \mathbf{v}).$
Unit-III		
6.	(a)	Show that if there is a surface of minimum area passing through a closed space curve, it is necessarily a minimal surface. 10
	(b)	To show that $F = 0$, $M = 0$ is the necessary and sufficient condition
		for the lines of curvature to be parametric curves. Or
7.	(a)	To find surface of revolution having constant negative Gaussian
		curvature.
	(b)	Show that the principal radii of curvature of the surface y cos (z/a) = x sin (z/a) are equal to $\pm (x^2+y^2+a^2)/a$. Find lines of curvature.
		Unit-IV
8.	(a)	Prove that $\frac{\partial A_r}{\partial x^s}$ is not a tensor even though A_r is a covariant
		tensor of rank one.
	(b)	Prove that the outer product of tensors is commutative and associative. Or
9.	(a)	A symmetric tensor of rank two has at most $\frac{1}{2}$ N (N+1) different
		components in V_N .
	(b)	To show that Christoffel's symbol is not a tensor quantity.

MGKVPonline.com